Social Media in English and Russian Language Consciousness. Article 1. Psycholinguistic experiments

Keywords: social media, social networks, psycholinguistics 2.0, language consciousness, psycholinguistic experiment, English, Russian.


Introduction. This research is devoted to the systematic description of a concept «social media» in the Russian and English linguistic consciousness. The article consists of two parts. The first part is dedicated to the research of the concept in a serial psycholinguistic experiment. The second part includes the analysis of the concept’s presence in text corpora and also the field and the classificational cognitive models of the concept. The first part describes nominative fields of the concept «social media» and its subconcepts and provides a cognitive interpretation and a comparative analysis of the data in Russian and English languages.

Methods of the research. The structure of the concept «social media» is set by the method of subjective definition of the word. The structure of subconcepts (social network, Facebook, Instagram, etc.) is set by the method of free associations. The procedure of cognitive interpretation sets cognitive classifiers of the concept. The significance of the quantitative analysis was diagnosed by the Fisher angular transformation method (criterion φ).

Results. The non-specific trait of the concept «social media» in Russian and English discourses is the identical classificational cognitive structure. Dissimilarities in the structure are noticeable only in the peripheral zones. The diffusion of the reactions (in various experiments) in the core and peripheral zones shows that the concept «social media» is socially and culturally specific.

Conclusion. The results can be useful in the development of psycholinguistics 2.0, sociolinguistics, computational linguistics (OCR, ASR, data mining, automatic translation, etc.), lexicography, etc.


Download data is not yet available.


Akimova, N., & Oleksandrenko, K. (2019). Vplyv dosvidu korystuvannia internetom na osoblyvosti rozuminnia tekstiv internetu [Impact of the Internet Using Experience on the Peculiarities of the Internet Texts Understanding]. Psykholinhvistyka – Psycholinguistics, 26 (1), 11–36. [in Ukrainian].

Babenko, M. (Ed.). (2018). Konceptosfera russkogo jazyka. Kljuchevye koncepty i ih reprezentacii v jazyke i rechi [The concept sphere of the Russian language. Key concepts and their representations in language and speech]. Moscow: Azbukovnik [in Russian].

Goroshko, O., & Poliakova, T. (2019). Osvita 2.0: psykholinhvistychnyi analiz [Education 2.0: Psycholinguistic Analysis]. Psykholinhvistyka – Psycholinguistics, 26 (2), 27–45. [in Ukrainian].

Kaminska, O., Stezhko, Y., & Gliebova, L. (2019). Psykholinhvistyka virtualnoi komunikatsii v konteksti zalezhnosti vid sotsialnykh merezh [Psycholinguistics of Virtual Communication in the Context of the Dependence on Social Networks]. Psykholinhvistyka – Psycholinguistics, 25 (1), 147–164. [in Ukrainian].

Klyuev, N.A. (2016a). Struktura koncepta «socialnye seti» v russkom jazykovom soznanii [Structure of the concept “social networks” in the Russian language consciousness]. Master’s Journal, 1, 479–484 [in Russian].

Klyuev, N.A. (2016b). Durov vs. Czukerberg: «Vkontakte» i «Facebook» v russkom yazykovom soznanii [Durov vs. Zuckerberg: “Vkontakte” and “Facebook” in the Russian linguistic consciousness]. Socio- i psixolingvisticheskie issledovaniya – Socio- and psycholinguistic research, 4, 98–104 [in Russian].

Klyuev, N.A. (2018a). Koncept socialnye media v russkom jazykovom soznanii (po materialam analiza literatury i psiholingvisticheskogo jeksperimenta) [Social media concept in the Russian language consciousness (based on literature analysis and psycholinguistic experiment)]. Litera, 3, 11–21. [in Russian].

Klyuev, N.A. (2018b). Viber i WhatsApp v russkom jazykovom soznanii: analiz polevoj i kategorialnoj struktury [Viber and WhatsApp in Russian language consciousness: analysis of field and categorical structure]. Filologija: nauchnye issledovanija – Philology: scientific research, 3, 40–51. [in Russian].

Popova, Z.D., & Sternin, I.A. (2007). Ponyatie kognitivnoj interpretacii [The Concept of cognitive interpretation]. Kognitivnaya lingvistika – Cognitive linguistics (pp. 198–210). Moscow: «Vostok-Zapad» [in Russian].

Khraban, T. (2019). Psiholingvisticheskie aspekty vizualnyh komponentov internet-memov [Psycholinguistic Aspects of the Internet Memes’ Visual Components]. Psykholinhvistyka – Psycholinguistics, 26 (2), 341–357. [in Russian].

Shebanova, V., & Yablonska, T. (2019). Nikneim yak zasib movnoi samoprezentatsii v Interneti osib z porushenniamy kharchovoi povedinky [Nickname as a Means of Linguistic Self-Presentation in the Internet of People with Eating Disorders]. Psykholinhvistyka – Psycholinguistics, 25 (1), 409–430. [in Ukrainian].

Bail, C.A. et al. (2018). Exposure to opposing views on social media can increase political polarization. Pnas, 115 (37), 9216–9221.

Blank, G., & Lutz, C. (2017). Representativeness of social media in Great Britain: Investigating Facebook, LinkedIn, Twitter, Pinterest, Google+, and Instagram. American Behavioral Scientist, 61, 741–756.

Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2012) Detecting automation of Twitter accounts: are you a human, bot, or cyborg? IEEE Trans Dependable Secur Comput, 9 (6), 811–824.

Gilani, Z., Almeida, M., Farahbakhsh, R., Wang, L., & Crowcroft, J. (2016). Stweeler: A framework for Twitter bot analysis. Proceedings of the 25th international conference companion on world wide web (pp. 37–38). Montréal, Canada.

Gilani, Z., Farahbakhsh, R., Tyson, G., Wang, L., & Crowcroft, J. (2017). Of bots and humans (on Twitter). Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 349–354). Sydney, Australia.

Grimme, C., Assenmacher, D., & Adam, L. (2018). Changing perspectives: Is it sufficient to detect social bots? In G. Meiselwitz (Ed.), Social computing and social media, user experience and behavior, SCSM 2018 lecture notes in computer science (pp. 445–461). Springer, Cham.

Guo, L., Tan, E., Chen, S., Zhang, X., & Zhao, Y. (2009). Analyzing patterns of user content generation in online social networks. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 369–378). Paris, France.

Hargittai, E. (2018). Potential Biases in Big Data: Omitted Voices on Social Media. Social Science Computer Review, 38(1), 10–24.

Schmidt, A.L. et al. (2017). Anatomy of news consumption on Facebook. Pnas, 114 (12), 3035–3039.

Stine, Z.K., & Agarwal, N. (2019). Characterizing the language-production dynamics of social media users. Soc. Netw. Anal. Min., 9, 60.

Stine, Z.K., Khaund, T., & Agarwal, N. (2018). Measuring the information-foraging behaviors of social bots through word usage. Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining (pp. 570–671). Barcelona, Spain.

Winata, C., & Andangsari, E.W. (2017). Dispositional Gratitude and Social Comparison Orientation among Social Media Users. Humaniora, 8 (3), 229–237.

Abstract views: 544
PDF Downloads: 403
How to Cite
Shlyakhova , S., & Klyuev , N. (2020). Social Media in English and Russian Language Consciousness. Article 1. Psycholinguistic experiments. PSYCHOLINGUISTICS, 27(2), 385-416.